Dependent Indian Buffet Processes

نویسندگان

  • Sinead Williamson
  • Peter Orbanz
  • Zoubin Ghahramani
چکیده

Latent variable models represent hidden structure in observational data. To account for the distribution of the observational data changing over time, space or some other covariate, we need generalizations of latent variable models that explicitly capture this dependency on the covariate. A variety of such generalizations has been proposed for latent variable models based on the Dirichlet process. We address dependency on covariates in binary latent feature models, by introducing a dependent Indian buffet process. The model generates, for each value of the covariate, a binary random matrix with an unbounded number of columns. Evolution of the binary matrices over the covariate set is controlled by a hierarchical Gaussian process model. The choice of covariance functions controls the dependence structure and exchangeability properties of the model. We derive a Markov Chain Monte Carlo sampling algorithm for Bayesian inference, and provide experiments on both synthetic and real-world data. The experimental results show that explicit modeling of dependencies significantly improves accuracy of predictions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical Beta Processes and the Indian Buffet Process

We show that the beta process is the de Finetti mixing distribution underlying the Indian buffet process of [2]. This result shows that the beta process plays the role for the Indian buffet process that the Dirichlet process plays for the Chinese restaurant process, a parallel that guides us in deriving analogs for the beta process of the many known extensions of the Dirichlet process. In parti...

متن کامل

Restricted Indian buffet processes

Latent feature models are a powerful tool for modeling data with globally-shared features. Nonparametric exchangeable models such as the Indian Buffet Process offer modeling flexibility by letting the number of latent features be unbounded. However, current models impose implicit distributions over the number of latent features per data point, and these implicit distributions may not match our ...

متن کامل

Poisson Random Fields for Dynamic Feature Models

We present the Wright-Fisher Indian buffet process (WF-IBP), a probabilistic model for time-dependent data assumed to have been generated by an unknown number of latent features. This model is suitable as a prior in Bayesian nonparametric feature allocation models in which the features underlying the observed data exhibit a dependency structure over time. More specifically, we establish a new f...

متن کامل

The Indian Buffet Process: An Introduction and Review

The Indian buffet process is a stochastic process defining a probability distribution over equivalence classes of sparse binary matrices with a finite number of rows and an unbounded number of columns. This distribution is suitable for use as a prior in probabilistic models that represent objects using a potentially infinite array of features, or that involve bipartite graphs in which the size ...

متن کامل

Posterior Contraction Rates of the Phylogenetic Indian Buffet Processes.

By expressing prior distributions as general stochastic processes, nonparametric Bayesian methods provide a flexible way to incorporate prior knowledge and constrain the latent structure in statistical inference. The Indian buffet process (IBP) is such an example that can be used to define a prior distribution on infinite binary features, where the exchangeability among subjects is assumed. The...

متن کامل

Stick-breaking Construction for the Indian Buffet Process

The Indian buffet process (IBP) is a Bayesian nonparametric distribution whereby objects are modelled using an unbounded number of latent features. In this paper we derive a stick-breaking representation for the IBP. Based on this new representation, we develop slice samplers for the IBP that are efficient, easy to implement and are more generally applicable than the currently available Gibbs s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010